Pre-Algebra
7-5
Solving Equations with Variables on Both Sides

Objectives:
1.
2.

Collecting the Variable on One Side

STEPS FOR SOLVING MULTI-STEP EQUATIONS

Step 1 Use the Distributive Property.
Step 2 Combine like terms on each side.
Step 3 Move the variables to one side of the equation.
Step 4 Undo addition or subtraction.
Step 5 Undo multiplication or division.

EXAMPLE 1 Collecting the Variable on One Side
Solve each equation.

1. \[9x + 2 = 4x - 18\]

 STEPS

 1. Subtract 4x from each side.

 2. Simplify.

 3. Subtract 2 from each side.

 4. Simplify.

 5. Divide each side by 5.

2. \[4x + 4 = 2x + 36\]

3. \[-15 + 6b = -8b + 13\]

4. \[4c + 3 = 15 - 2c\]
Using Equations With Variables on Both Sides

EXAMPLE 1 Using the Distributive Property and Combine Like Terms First

Solve each equation.

1. \(-2(y + 6) = y + 3 + 2y\)

 STEPS
 1. Distribute the -2.
 2. Combine Like Terms.
 3. Subtract 3y from both sides.
 4. Simplify
 5. Add 12 to both sides.
 6. Simplify
 7. Divide both sides by -5.
 8. Simplify.

 1. \(-2(y + 6) = y + 3 + 2y\)
 - Distribute: \(-2y - 12 = y + 3 + 2y\)
 - Combine Like Terms: \(-3y - 12 = 3\)
 - Subtract 3y from both sides: \(0 = 15\)
 - Add 12 to both sides: \(0 = 15\)
 - Divide both sides by -5: \(y = -3\)

 2. \(7a - 4 + 2a = 3a - 2\)
 - Combine Like Terms: \(9a - 4 = 3a - 2\)
 - Subtract 3a from both sides: \(6a - 4 = -2\)
 - Add 4 to both sides: \(6a = 2\)
 - Divide both sides by 6: \(a = \frac{1}{3}\)

 3. \(7x + 9 = 4x\)
 - Subtract 4x from both sides: \(3x + 9 = 0\)
 - Subtract 9 from both sides: \(3x = -9\)
 - Divide both sides by 3: \(x = -3\)
4. $8m - 5 = 5m + 7$
 \[
 \begin{align*}
 & \quad 8m - 5m = 5 + 7 \\
 \hline
 & 3m = 12 \\
 \hline
 & \quad m = 4
 \end{align*}
 \]

5. $x + 7x + 15x = 29x + 18$
 \[
 \begin{align*}
 & \quad 29x = -29x + 18 \\
 \hline
 & -6x = 18 \\
 \hline
 & \quad x = -3
 \end{align*}
 \]

6. $8(7 - p) - 8 = -16(p - 2)$
 \[
 \begin{align*}
 & \quad 56 - 8p - 8 = -16p + 32 \\
 \hline
 & 48 - 8p = -16p + 32 \\
 \hline
 & +16p \quad +16p \\
 \hline
 & 48 + 8p = 32 \\
 \hline
 & -48 \quad -48 \\
 \hline
 & +8p = -16 \\
 \hline
 & \quad p = -2
 \end{align*}
 \]

7. $k + k + k = k + 18$
 \[
 \begin{align*}
 & \quad 3k = k + 18 \\
 \hline
 & -k \quad -k \\
 \hline
 & 2k = 18 \\
 \hline
 & \quad k = 9
 \end{align*}
 \]

8. $3(n - 5) = -2n$
 \[
 \begin{align*}
 & \quad 3n - 15 = -2n \\
 \hline
 & +15 \quad +15 \\
 \hline
 & 3n = -2n + 15 \\
 \hline
 & +2n \quad +2n \\
 \hline
 & 5n = 15 \\
 \hline
 & \quad n = 3
 \end{align*}
 \]

9. $4(y - 9) = 3(2y - 8)$
 \[
 \begin{align*}
 & \quad 4y - 36 = 6y - 24 \\
 \hline
 & -6y \quad .6y \\
 \hline
 & -2y - 36 = -24 \\
 \hline
 & +36 \quad +36 \\
 \hline
 & -2y = 12 \\
 \hline
 & \quad y = -6
 \end{align*}
 \]

10. $6(z - 2) + 3 = 3z - 15$
 \[
 \begin{align*}
 & \quad 6z - 12 + 3 = 3z - 15 \\
 \hline
 & 6z - 9 = 3z - 15 \\
 \hline
 & -3z \quad -3z \\
 \hline
 & 3z - 9 = -6 \\
 \hline
 & +9 \quad +9 \\
 \hline
 & 3z = -6 \\
 \hline
 & \quad z = -2
 \end{align*}
 \]

11. $-2x + 7 = x - 8$
 \[
 \begin{align*}
 & \quad -2x = x - 15 \\
 \hline
 & -3x + 7 = -8 \\
 \hline
 & -7 \quad -7 \\
 \hline
 & -3x = -15 \\
 \hline
 & \quad x = 5
 \end{align*}
 \]

12. $7(v - 4) = 3(3 + v) - 1$
 \[
 \begin{align*}
 & \quad 7v - 28 = 9 + 3v - 1 \\
 \hline
 & 7v - 28 = 8 + 3v \\
 \hline
 & -3v \quad -3v \\
 \hline
 & 4v - 28 = 8 \\
 \hline
 & +28 \quad +28 \\
 \hline
 & 4v = 36 \\
 \hline
 & \quad v = 9
 \end{align*}
 \]
Pre-Algebra Objectives 7.5

The student should be able....

1. To solve equations with variables on both sides.

2. To use equations with variables on both sides.